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The variation of blood pressure (BP) waveforms contains abun-
dant information about the dynamic cardiovascular status1,2. 
Each one of the peaks and notches in the arterial BP wave-

form represents a specific left heart activity, and the characteristic 
morphology of the venous BP waveform is closely related to rel-
evant right heart events3. Continuous monitoring of subtle changes 
in these vital signals can thus provide remarkable insights for car-
diovascular disease diagnosis and prognosis4. Although monitoring 
vascular pulsation at peripheral sites is useful for specific symptoms, 
emerging evidence suggests that the central arterial and venous BP 
waveforms possess significantly more relevance to cardiovascular 
events than the peripheral BP (PBP)5–8. First, major organs, includ-
ing the heart, kidneys, lungs and brain, are directly exposed to 
the central arteries. Distending pressure in the large elastic arter-
ies (such as the aorta and carotid arteries) is a vital determinant 
of the degenerative changes that characterize accelerated aging 
and hypertension9. Second, the amplification and reflection effect 
caused by the complexities of peripheral vascular resistance along 
the conduit artery (namely the stiffness mismatch between periph-
eral and central vessels) is hard to evaluate. This uncertainty often 
has an irregular and unpredictable influence on the PBP waveform, 
making it unsuitable for achieving reliable assessment of cardio-
vascular status10. Third, although the central blood pressure (CBP) 
waveform can sometimes be derived from the PBP waveform via 
a translational equation, demographic results indicate that clinical 
treatments, such as the use of BP-lowering drugs, can exert differ-
ent effects on the PBP and CBP waveforms7,11, leading to inaccurate 
recordings12. This inaccuracy can cause errors in the assessment of 

myocardial oxygen requirement13 and ventricular load and hyper-
trophy14, as well as disparities in the actions of different vasodilator 
agents15. Therefore, treatment decisions for cardiovascular diseases 
should be based on CBP rather than PBP waveforms16.

The gold standard for recording CBP waveforms in the carotid 
artery and jugular venous sites—cardiac catheterization (also 
known as cannulation)—involves implanting a fibre-based pres-
sure sensor into the relevant vasculature17 (Supplementary Note 1). 
Despite its high accuracy, it causes patient suffering and increases 
the risk of infection, and thus is too invasive for routine inspec-
tions1. Although there are several non-invasive methods, includ-
ing the optical method (photoplethysmography (PPG) or volume 
clamp)18, tonometry4,19 and ultrasound wall-tracking, that can 
potentially monitor the CBP waveform, they suffer from a number 
of technical challenges. Specifically, PPG has insufficient penetra-
tion depth (<​8 mm) for measuring the central vasculature, which 
is often embedded in a tissue thickness of more than 3 cm (ref. 20). 
Other technical problems for PPG can be summarized as signal 
aliasing from venous and arterial pulsations21, susceptibility to heat 
and moisture22, and a high dependence on the blood composition 
being constant23. Tonometry involves using strain sensors to detect 
vessel pulsation. This method relies on the efficiency of blood vessel 
flattening by the tonometer, so is only recommended for PBP mea-
surements where a supporting bony structure is available that can 
provide a solid mechanical support24. For this reason, its accuracy is 
largely degraded when measuring central vasculatures with no prox-
imal supporting skeleton. This method is also adversely affected if 
the subject is obese, as this greatly dampens pulse wave propagation  
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to the skin (Supplementary Notes 2 and 3 and Supplementary  
Figs. 1 and 2). The ultrasound wall-tracking technique, which has 
high penetrating capability, utilizes a high-speed imaging probe 
to track the pulsation of vasculature embedded in deep tissues25. 
However, the imaging probe is highly sensitive to motion artefacts, 
which adds significant burden to its associated wall-tracking rec-
ognition algorithm (Supplementary Note 4 and Supplementary  
Fig. 3). Additionally, current ultrasound imaging probes are heavy 
and bulky, and to achieve a reliable acoustic coupling interface the 
probe must be held stable by the operator. This introduces inevitable 
compression to local vasculatures, changing their distension behav-
iour and leading to inaccurate recordings (Supplementary Fig. 4). 
Therefore, this method is not suitable for long-term monitoring.

Wearable devices with mechanical properties similar to the skin 
offer the capability for non-invasive, continuous monitoring of a 
variety of vital signs26, including local field potentials27, tempera-
ture28, sweat content29,30 and skin hydration31. However, their appli-
cations have typically been limited to recording signals on the skin 
or in the shallow tissue under the epidermis. Here, we introduce 
an approach that allows the ultrasonic technology to be integrated 
in a wearable format. The ultrasonic waves can effectively pen-
etrate human tissues up to a depth of 4 cm, which opens up a third 
dimension to the sensing range of current state-of-the-art wearable 
electronics. With similar mechanical properties to the skin and an 
ultrathin profile, the wearable ultrasonic device can ensure a con-
formal intimate contact with the curvilinear and time-dynamic skin 
surface, and continuously monitor the CBP of deep vasculatures 
without the operational difficulties or instabilities encountered by 
the other conventional approaches. This non-invasive, continuous 
and accurate monitoring of deep biological tissues/organs opens up 
opportunities for diagnosing and predicting a broad range of car-
diovascular diseases in a wearable format.

Results
Device design and working principle. The device hybridizes high-
performance rigid 1–3 piezoelectric composites with soft struc-
tural components (Fig. 1a and Supplementary Figs. 5 and 6). The 
anisotropic 1–3 composite possesses better acoustic coupling with 
the soft biological tissue than isotropic piezoelectric materials. By 
combining geometrical and electrical designs, our device can reach 
an ultrathin thickness of 240 μ​m, three orders of magnitude thinner 
than existing medical ultrasonic probes (Supplementary Note 5). 
The elastic and failure strain levels are up to 30% and 60%, respec-
tively (Supplementary Figs. 7 and 8). The 1–3 piezoelectric compos-
ite with a thickness of 200 μ​m has a working frequency of 7.5 MHz 
(Supplementary Fig. 9), which enables a 400 μ​m axial resolution 
(see Methods and Supplementary Fig. 10) that is comparable with 
available medical ultrasonic probes at the same working frequency. 
The 1–3 composite has piezoelectric microrods embedded in a peri-
odic configuration in a passive epoxy matrix, which substantially 
increases the longitudinal coupling coefficient k33 by suppressing 
shear vibrating modes. The rigid piezoelectric transducer element 
has a 0.9 ×​ 0.9 mm2 footprint to allow sufficient penetration depth 
into the tissue, while adding minimal mechanical loading to human 
skin (Fig. 1b).

Bilayer stacking of polyimide (PI, 4 μ​m)/Cu (20 μ​m) (Fig. 1a, top 
left) was used to fabricate stretchable electrodes to interconnect a 
4 ×​ 5 array of transducers in the device (for the detailed fabrication 
process see Methods). The transducers can be individually addressed 
by 20 stimulating electrodes on the top and a common ground at the 
bottom. The array design aims to map the vessels’ positions, thus 
enabling sensing and monitoring by a transducer overlying the tar-
geted vessel, without tedious manual positioning (Supplementary 
Note 6 and Supplementary Fig. 11). The top simulating electrodes 
and the bottom ground are routed to the same plane by a vertical 
interconnect access (VIA) for optimized mechanical robustness 

and ease of electrical bonding (Fig. 1a, Supplementary Fig. 12 and 
Supplementary Note 7).

The working principle is illustrated in Fig. 1a bottom. Technically, 
the device can continuously record the diameter of a pulsating blood 
vessel, which can be translated into localized BP waveforms32. The 
BP waveform can be calculated as
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where pd is the diastolic pressure, which is acquired on the brachial 
artery using a BP cuff, Ad is the diastolic arterial cross-section, and 
α is the vessel rigidity coefficient. Assuming that the artery is rota-
tionally symmetrical, A(t) can be calculated as
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where d(t) is the diameter waveform of the target artery. The 
detailed working principle, resolution, calibration and validation 
of our device are described in the Methods and Supplementary 
Notes 8 and 9. When the device is softly laminated on the skin 
(Supplementary Fig. 13), each transducer can be individually acti-
vated and controlled with a power consumption of 23.6 mW. When 
the ultrasonic wave reaches interfaces, both transmission and reflec-
tion occur. The transmission wave with reduced intensity allows 
penetration into deeper layers of tissues. The reflection wave, which 
carries critical location information about the interfaces (for exam-
ple, the anterior and posterior walls), can be sensed by the same 
transducer33. The vessel diameter measurement results were vali-
dated by clinical ultrasonography (with excellent correspondence, 
99.7%; Supplementary Fig. 14). At a high pulse repetitive frequency 
(2,000 Hz), time of flight (TOF) signals corresponding to the pulsat-
ing anterior and posterior walls can be accurately recorded by an 
oscilloscope with 2 GHz sampling frequency, which will appear as 
separate and shifting peaks in the amplitude mode (Fig. 1a, right 
bottom). The device can capture the pulsating blood vessel diam-
eter dynamically with high spatial (axial resolution of 0.77 μ​m) and 
temporal (500 μ​s) resolution.

The entire device is encapsulated by a silicone elastomer with 
modulus on par with that of human skin. The elastomer is only 15 μ​m  
thick to provide a trade-off between mechanical robustness and 
sufficient acoustic emission performance (Supplementary Fig. 15 
and Supplementary Note 5). The hydrophobic nature of the silicone 
elastomer provides a barrier to moisture, which protects the device 
from possible sweat corrosion (Fig. 1b). Owing to its soft mechan-
ics, the as-fabricated ultrasound patch allows conformation to both 
developable (Fig. 1b, left) and non-developable (Fig. 1b, middle) 
surfaces. The device is also robust and can endure twisting and 
stretching (Fig. 1b, right), showing its high potential for skin inte-
gration applications.

Device characterization. The piezoelectric transducer converts 
electrical potential between the top and bottom electrodes to 
mechanical vibrations, and vice versa. The efficiency of this process 
is exhibited by the measured impedance and phase angle spectra 
in Fig. 2a, which show excellent piezoelectricity with a measured 
k33 value of 0.81, much higher than that of bulk PZT (~0.58)33 due 
to its anisotropic high-aspect-ratio rod configuration (compared 
with isotropic bulk PZT34). The transducer performance was evalu-
ated on the wrist ulnar artery of a healthy male. The echo signal is 
shown in Fig. 2b, where the TOF of the two peaks corresponds to 
the positions of the anterior and posterior walls of the ulnar artery, 
respectively. Signal analysis in the time and frequency domains of 
the posterior wall is presented in Fig. 2c, which shows that the mate-
rial has a central frequency of 7.5 MHz and has good sensitivity of 
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32% at −​6 dB bandwidth (see Methods), with a peak to peak voltage 
of ~100 mV. Prediction of the beam pattern (Matlab R2016b, TAC_
GUI toolbox) of our stretchable ultrasonic device is shown in Fig. 2d. 
The results show that, in the longitudinal direction, the conformal 
probe has excellent beam directivity and sufficient penetration for 
deep tissue detection, reaching a penetration depth of up to 40 mm 
(with a piezoelectric transducer size of 0.9 ×​ 0.9 mm2). The larger the 
piezoelectric material size, the deeper the ultrasonic wave can pen-
etrate (Supplementary Fig. 16). The 1–3 composite has low acoustic 
impedance (15.3 MRayl), which provides excellent acoustic coupling 
with the human skin. Additionally, the bottom circular electrode 
diameter is designed to be 0.6 mm to balance practical bonding 
robustness and impedance matching (Supplementary Fig. 17).

The elastomeric matrix with iterative stretchable circuit designs 
and ultrathin encapsulation assemblies provides exceptionally 
conformal contacts to the human skin under various deforma-
tion modes (Supplementary Fig. 18). The device can be reversibly 
stretched up to 30% in the x direction and 25% in the y direc-
tion. The maximum stretchability can reach up to 60% in the x 

direction and 50% in the y direction (Fig. 2e). These mechanical 
characteristics enable robust and seamless contact with the skin 
(Supplementary Note 10), given the fact that the human skin typi-
cally exhibits a linear elastic response to tensile strain of <​20%  
(ref. 35). The electrical performance of the device remains stable 
under stretching and in a moist environment (Supplementary  
Fig. 19). Cell viability testing under controlled ultrasound intensity 
is shown in Fig. 2f and Supplementary Fig. 20. The fibroblast cells 
(HFF-1) were cultured under ultrasonic wave emission from our 
conformal probe with a 100% survival rate after 16 h of continu-
ous exposure, showing the excellent biocompatibility of our device  
(for detailed cell information see Methods).

Performance validation. A conformal and intimate contact between 
the device and the human skin is paramount for robust performance 
of the device. Figure 3a presents continuous measurements on the 
radial artery using our device and a commercial tonometer (the 
non-invasive gold standard for BP waveform measurements) with 
the wrist bent to different angles. In this scenario the tonometer  
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needs to be held tightly by the operator to remain stable on the 
wrist, resulting in great pressure (~100 Pa) on the skin, which 
causes severe irritation (Fig. 3b) and also significant waveform 
distortion and erroneous readings (Fig. 3c). However, our device 
self-adheres to the skin and applies minimal pressure (~5 Pa) due 
to its ultralight weight (0.15 g) and skin-like modulus. This enables 
the device to not only monitor over long periods without any dis-
comfort, but also allows relatively stable and continuous record-
ing, even during motion. Correlation curves of the two devices are 
shown in Fig. 3d. Most importantly, our device has smaller relative  

measurement uncertainty (1%), higher measurement precision 
(within 2 mmHg) and higher accuracy (grade A) than the commercial 
equipment (Supplementary Note 11, Methods and Supplementary 
Figs. 21 and 22). Furthermore, the tonometer is highly operator-
dependent, which is reflected by the fact that a tiny offset from the 
central arterial axis or moderate holding forces of the tonometer 
probe will introduce tremendous recording error into the BP wave-
form (Supplementary Figs. 23 and 24). Our conformal ultrasonic 
array with its ultralight weight and vessel positioning capability thus 
exhibits substantial advantages over applanation tonometry.
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the largest damping. b, Received ultrasonic signals on the ulnar artery, with two clear echo peaks from the anterior (ant.) and posterior (post.) vessel 
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More interestingly, the conformal ultrasound probe enables a 
gel-free working mode. Traditional ultrasonic transducers rely on 
ultrasound gel to eliminate interfacial air gaps between the probe 
and the skin to achieve good acoustic coupling. The gel is unpleas-
antly cold and has to be reapplied frequently to prevent it from dry-
ing out. In this device, we add a thin layer of silicone as the acoustic 
coupling layer. The silicone is sticky and has an ultralow modulus 
(~5 kPa) to ensure intimate contact with the skin without applying 
any gel. The quality of the acquired signals and waveforms is com-
parable to those acquired with the gel (Supplementary Fig. 25 and 
Methods). Moisture and human sweat, which significantly influ-
ence PPG measurements, do not affect the performance of the con-
formal ultrasound device (Supplementary Fig. 26). The design leads 
to a device with remarkable durability, allowing highly reproducible 
testing results after four weeks (Supplementary Fig. 27).

Dynamic haemodynamics monitoring. Owing to its excellent 
mechanical compliance and light weight, our device can maintain 

intimate and stable contact with the human skin, both mechani-
cally and acoustically, in different body postures with pure van 
der Waals force (Supplementary Fig. 28). During exercise, muscles 
require increased delivery of nutrients and oxygen, and so the car-
diac output increases to meet the need36. On the one hand, the ves-
sels dilate to increase delivery, so vascular resistance and reflection 
are reduced. On the other hand, the heart rate and systolic strength 
increase to boost the cardiac output. Heart rates measured on the 
radial artery during resting (~75 min−1) and immediately after 
exercise (~112 min−1) are shown in Fig. 3e. The BP waveform has a 
higher systolic peak due to the stronger ventricular systole required 
to obtain more substantial cardiac output37. The averaged waveform 
morphology changes before and after intense exercise are presented 
in Fig. 3f (normalized to the same systolic and diastolic pressure 
values), which show a steep drop of the systolic peak after physi-
cal training due to the vasodilation-induced vascular resistance 
decrease. It is worth noting that we need to calibrate our device 
before and after any exercise that will significantly change the  
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diastolic pressure. However, we can observe the vessel dilation and 
vascular resistance decrease by comparing the normalized wave-
forms, regardless of the absolute BP values.

CBP recording. From a pathophysiological perspective, the CBP 
waveform is a crucial, and the most direct, predictor of main car-
diovascular events5. Monitoring such events in a continuous and 
long-term manner can lead to remarkable advancements in car-
diovascular disease diagnosis and prevention6, which are yet to be 
realized with existing medical tools (Supplementary Note 12). We 
demonstrate highly accurate direct measurements of central vas-
culature pulsating behaviour in deep tissues, including the carotid 
artery and internal and external jugular veins. Schematic illustra-
tions of the measurement configuration are provided in Fig. 3g. The 
carotid artery (CA, ~25 mm under the skin, with slight individual 
variations38, near the central aorta) carries a significant amount of 
blood from the left ventricle (LV) and left atrium (LA) to the rest of 
the body. A typical period of the carotid artery BP waveform mea-
sured by our device shows a clear systolic peak and a dicrotic notch 
(Fig. 3h). The former indicates ventricular systole and the latter 
suggests closure of the aortic valve. A detailed CBP measurement 
calibration is provided in Supplementary Note 9. The correspond-
ing validation using a commercial tonometer exhibits remarkable 
correspondence (Supplementary Fig. 29). The blood flow sequence 
in the central cardiovascular system and direct relationship between 
the central vessels and heart are shown in Supplementary Fig. 30. A 
detailed clinical interpretation of arterial BP waveforms is illustrated 
in Supplementary Fig. 31 and discussed in Supplementary Note 13.

The internal jugular vein, carrying venous blood to the right 
atrium and right ventricle and finally to the lung, reflects the right 
heart activity. A typical jugular venous pressure waveform, mea-
sured by our device, is shown in Fig. 3i. The normalized pres-
sure waveform was obtained by the volume assessment method39. 
Associated algorithms and equations for this method are discussed 
in detail in Supplementary Note 9. The jugular venous waveform 

comprises three characteristic peaks—A (atrial contraction), C (tri-
cuspid bulging, ventricular contraction) and V (systolic filling of 
the atrium)—and two descents—X (atrial relaxation) and Y (early 
ventricular filling). These components correspond to various events 
during each cardiac cycle. The jugular venous waveform measured 
by a clinical colour Doppler imaging machine on the same subject 
is presented in Supplementary Fig. 32, and shows the correspond-
ing A, C and V peaks and X and Y descents. The jugular venous 
distension (JVD), seen as a vessel bulging on the neck created by 
deep exhalation of the subject (Supplementary Fig. 33), can predict 
right-side heart failure40. More detailed discussions are provided in 
Supplementary Note 13.

BP waveform monitoring from central to peripheral. Owing to 
the amplification effect—namely progressive vascular resistance, 
stiffness and impedance mismatch between central and periph-
eral vessels—the arterial pressure waveform varies from central to 
peripheral6. Although the diastolic and mean arterial pressures are 
relatively constant, systolic pressure can be up to 40 mmHg higher 
in the peripheral than the central artery41. This amplification effect 
on various parts of the body contains abundant information related 
to age, gender, height, heart rate and systematic diseases affecting 
the vasculature42. These data, if carefully collected, can be critical 
for improving the efficacy of diagnosis and prognosis of cardiovas-
cular diseases43. However, in current clinical settings, such valuable 
data and signals can only be obtained by a professional clinician in a 
quite infrequent manner. The challenges for existing approaches are 
discussed in Supplementary Note 12.

Our device allows observation of this intriguing phenomenon. 
The amplification effect will increase as we move from the large and 
highly elastic central arteries (for example, the carotid) to the small 
and stiff peripheral arteries (for example, the radial and dorsalis 
pedis) (Fig. 4, first row, and Supplementary Fig. 34). This phenom-
enon is due to backward propagation of pulse waves generated at 
arterioles. At central sites, the reflected pulses need to travel a long 
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distance, so they add to the CBP waveform in a misaligned manner. 
At peripheral sites, however, they travel a much shorter distance, 
so instantly contribute to the peripheral BP waveform in a way that 
is time-aligned. Therefore, the more peripheral the artery is, the 
higher the amplification/augmentation will be (Fig. 4, second row). 
To validate this amplification effect, we used a commercial tonom-
eter to test the same subject. Remarkably corresponding results are 
shown in the third row of Fig. 4. An exciting feature contributed by 
this direct diameter measurement approach is that it allows obser-
vation of this amplification phenomenon and derivation of accu-
rate pulse pressure values from multiple body parts simultaneously 
from diastolic pressure at only the brachial site, with no site mis-
match (Supplementary Note 14 and Supplementary Fig. 35). The 
upstroke gradient increases as a result of the pressure amplification 
(Supplementary Fig. 36 and Supplementary Note 15).

Another notable feature of the BP waveforms is the progres-
sive time interval between the systolic peak and the dicrotic notch, 
which is illustrated by the grey areas in Fig. 4. When the pressure 
wave travels down from the central arteries, its magnitude increases 
due to impedance mismatches encountered on the way, creating a 
reflected wave that travels back to the heart during late systole and 
early diastole. This reflection wave takes a longer time to travel from 
a location that is more distant from the heart, and thus contributes 
to an increase in the time interval between the systolic peak and the 

dicrotic notch (grey areas in the waveforms in Fig. 4, third row)44. 
The capability of capturing those systemic variations demonstrates 
the device’s potential for accurate clinically relevant diagnosis.

Electrocardiogram correlation for arterial stiffness calculation. 
The characteristics of arterial pulse propagation have a strong rela-
tionship with vascular stiffness, which is one of the key determi-
nants of cardiovascular risks45. Among the vascular parameters, 
pulse wave velocity (PWV) is the most accessible and reliable way 
to evaluate arterial stiffness (Supplementary Note 16) and can be 
calculated as46

= DPWV
PAT

(3)

where D is the distance between the electrocardiogram (ECG) sen-
sor and the ultrasonic sensor. Schematics of the measurements are 
presented in Fig. 5a, which shows simultaneous measurements of the 
ECG and pulse arrival times (PATs) at three different sites—brachial, 
radial and dorsalis pedis. Figure 5b–d presents the ECG correlation 
results for case 1 (brachial artery, Fig. 5b), case 2 (radial artery; Fig. 5c)  
and case 3 (pedal artery, Fig. 5d), where the ECG is measured on 
the chest for all cases (Supplementary Fig. 37). As seen in Fig. 5b-d, 
the PWV in case 1 is 5.4 m s−1 (D =​ 54 cm, time difference =​ 100 ms), 
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in case 2 it is 5.8 m s−1 (D =​ 104 cm, time difference =​ 180 ms) and 
in case 3 it is 5.3 m s−1 (D =​ 159 cm, time difference =​ 300 ms). 
The PWV measurements are highly reproducible (Supplementary  
Fig. 38) and were validated by the commercial equipment, as shown 
in Fig. 5e and Supplementary Fig. 39 (for detailed testing conditions 
and measurement methods see Methods).

Discussion
We have demonstrated a new class of conformal and stretchable 
ultrasonic devices that offer non-invasive, accurate and continuous 
monitoring of vital signs from well below the human skin, adding 
a new dimension to the sensing range of conventional stretchable 
electronics. This device exploits strategic material integration and 
advanced microfabrication techniques to achieve both state-of-
the-art functions and suitable mechanical compliance that allows 
intimate coupling with the human skin. This device can be used to 
capture a series of key features in the central blood vessels with reli-
able performance, and has strong clinical implications.

Device performance and functionality could be improved. The 
measurement of absolute blood pressure using PAT is feasible by 
ECG correlation, bypassing the need for recalibration with the BP 
cuff (Supplementary Note 16). Furthermore, ultrasonic imaging on 
the human body could provide accurate quantification for the ves-
sel cross-sectional area to calculate the BP waveform, which is par-
ticularly valuable for CVP measurements on the irregularly shaped 
jugular veins. Additionally, integrating post-end functions such as 
electronic control, signal processing, waveform pattern recognition, 
wireless communications and power sources in a stretchable and 
lightweight format would significantly enhance device wearability. 
To reduce the system-level power consumption, a lower-sampling-
rate analog-to-digital converter could be used to decrease the power 
budget of data transmission. A phased-array control algorithm 
could also be implemented to allow focusing and steering of the 
ultrasonic beam inside the human body.

Methods
Fabrication of the stretchable ultrasonic device. The fabrication can be summarized 
into three parts: (1) stretchable circuit patterning; (2) transfer printing; (3) soft 
elastomeric packaging (Supplementary Fig. 40). First, a Cu foil (20 μ​m thick, 
MicroThin) was spin-coated with PI from poly(pyromellitic-dianhydride-co-4, 
4′​-oxydianiline)-amic acid solution. This process was performed at 4,000 r.p.m. for 
60 s. The foil was soft baked on a hotplate at 110 °C for 3 min and 150 °C for 1 min, 
and then cured in a nitrogen oven at 300 °C for 1 h. A glass slide coated with a layer 
of polydimethylsiloxane (PDMS, Sylgard 184 silicone elastomer, 20:1) served as the 
substrate to laminate the Cu foil with the PI layer in contact with the PDMS. UV 
ozone surface activation for 3 min was used to increase the bonding between the PI 
and PDMS. A laser ablation system (Supplementary Fig. 41; 0.342 mJ power, 900 kHz 
pulse repetition frequency, 300 mm s−1 laser cutting speed and 241 ns pulse width) was 
then utilized to create the circuit pattern with the highest resolution (Supplementary 
Fig. 42). Using water-soluble tape (Aquasol), the circuit was transferred onto a 
15-μ​m-thick Eco-flex (0030, Smooth-On) substrate spin-coated on a poly(methyl 
methacrylate)-decorated glass slide (Supplementary Fig. 43). After removing the 
water-soluble tape, the circuit surface was cleaned using flux to remove surface 
oxidation (Supplementary Fig. 44) created during the laser ablation process to increase 
the welding strength. Welding to the top and bottom electrodes was achieved with 
solder paste at 150 °C for 5 min. The device was encapsulated with Eco-flex. Curing 
was performed at room temperature for 2 h, and the glass slides were then peeled off. 
Finally, spin-coating an additional layer of Silbione on the Ecoflex substrate facilitated 
removal of the interfacial gaps and thus the necessity for the gel during testing.

Poling of the 1–3 composite. Poling the 1–3 composite (Smart Material Corp.) 
increased its piezoelectric coefficient and the electromechanical coupling factor of 
the composite47. Poling involved using an electric field to align the dipoles of the 
piezoelectric materials, which enhanced the piezoelectricity and performance of 
the device48. The polarizing hysteresis loop (Supplementary Fig. 45) was measured 
in silicone oil. Poling of the device was implemented at 1.2 kV cm−1 (d.c.) for 
15 min. An excessive poling electric field caused breakdown of the piezoelectric 
materials, thus reducing the signal strength (Supplementary Fig. 46).

Measurement and data analysis of the BP waveforms. The BP waveform 
measurement was carried out on a healthy male aged 22 years, under the approval 
by the Institutional Review Board (IRB) of the University of California, San 

Diego (IRB no. 170812). Written informed consent was obtained from all human 
subjects. All measurements were carried out on the same subject when sitting. The 
measurement set-up is illustrated in Supplementary Fig. 47. A layer of Silbione was 
applied to the bottom of the device surface to enable gel-free measurements. Signal 
analysis was based on the TOF, which was a gauge of the time interval between the 
signal peak and zero time point. The TOF was used to calculate the propagation 
distance by multiplying by the speed of ultrasound in the specimen. The device was 
activated by an ultrasonic pulser (Olympus 5077 PR) at 100 V, using the transmit/
receive mode. The pulse repetitive frequency was 2,000 Hz. The echo signal was 
received by an oscilloscope (Picoscope 6404) with a temporal resolution of 500 μ​s,  
which allowed precise vessel wall-tracking (Supplementary Note 8). Discussions 
of the measurement principle, resolutions, uncertainty, accuracy and precision are 
provided in Supplementary Notes 8 and 11 and Supplementary Figs. 22 and 48–50. 
The circuit enabling simultaneous measurement of pulse pressure on various sites 
is described in Supplementary Note 14 and Supplementary Fig. 51. A clinical 
colour Doppler machine (Mindray DC 7) was used to confirm the characteristic 
peaks in the venous waveform. The BP waveform measurement results were 
validated by a SphygmoCor EM3 tonometer.

ECG correlation. The ECG correlation to the BP waveforms at different locations 
was assessed on the same subject (when sitting), consecutively, with a 2 min 
interval, to guarantee the subject had a relatively constant BP value and arterial 
stiffness. The longest duration of skin integration on the same skin region was 
~2 h. No allergic reactions, redness or damage to the skin was observed in any 
of our studies. The diastolic pressure was calibrated using a commercial BP cuff 
(Smart Logic Technology, 6016) before each monitoring period. The tested subject 
maintained a stable physiological and psychological status to guarantee stable levels 
of BP and vasculature stiffness. A detailed discussion of PAT, pulse transit time 
(PTT) and PWV is provided in Supplementary Fig. 52 and Supplementary Note 16.

Transducer selection, bandwidth and resolution characterization. We chose 
piezoelectric ultrasound transducers (PUTs) instead of capacitive micromachined 
ultrasound transducers (cMUTs) or piezoelectric micromachined ultrasound 
transducers (pMUTs), because of the low cost and ease of fabrication of PUTs. 
More detailed considerations are presented in Supplementary Note 5 and 
Supplementary Fig. 53. The transducer bandwidth (32%) was calculated by 
dividing the frequency range (2.4 MHz) by the central frequency (7.5 MHz). 
The axial resolution characterization exploited a thin metal wire suspended at 
the centre of a beaker filled with water. A 1 ×​ 10 linear array of transducers was 
fabricated and attached to the beaker wall parallel to the ground. All signals from 
the ten transducer elements were acquired and combined with one transducer as 
the transmitter and the other as the receiver (for example, 1T2R, 1T3R…​ 1T10R; 
2T1R, 2T3R…​ 2T10R;…​ ; 10T1R, 10T2R…​ 10T9R). A total of 90 signals were 
used with the delay-and-sum algorithm to reconstruct the image (Supplementary 
Fig. 10c). The obtained image had low-level side lobes resulting from the 
reconstruction algorithm and the limited number of elements used for imaging.

Cell viability assay under ultrasound exposure. The HFF-1 cells were 
purchased from American Type Culture Collection (ATCC) and cultured in 
Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented with 10% 
fetal bovine serum (FBS, Gibco) and 1% penicillin/streptomycin (Gibco) at 
37 °C and 5% CO2. The HFF-1 cells were subcultured and seeded into a 24-well 
plate at a density of 1 ×​ 104 ml−1 and incubated for another 24 h. No antibodies 
were used in the experiment. An ultrasound beam at a frequency of 7.5 MHz 
was applied to the bottom of the culture plate. After 2, 6 and 16 h of ultrasound 
exposure, the cells were stained with calcein AM (Invitrogen, 3M, excitation/
emission =​ 488 nm/525 nm) and propidium iodide (Invitrogen, 3M, excitation/
emission =​ 530 nm/620 nm) for 15 min, and then imaged under fluorescence 
microscopy (EVOS, Thermofisher Scientifics). For the positive control group, the 
cells were treated with 75% ethanol for 10 min.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the findings of this study are available within the Article 
and its Supplementary Information. The raw data generated in this study are 
available from the corresponding author upon reasonable request.
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    Experimental design
1.   Sample size

Describe how sample size was determined. The blood-pressure-waveform sampling was taken on the same subject at different body 
parts (three measurements for each). Owing to the high reproducibility of the measurements, 
the chosen sampling size was determined to be sufficient.

2.   Data exclusions

Describe any data exclusions. No data were excluded from the analyses.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

The blood-pressure waveform was taken on the same subject (with stable 
physiological condition). All the sampling positions were measured in 4 discrete periods of 
time. All the measurement were taken within the same 2 weeks. The high similarity of the 
results showed good reproducibility of the blood-pressure-waveform acquisition. All attempts 
at replication were successful. 
 
The ECG correlation was taken on the same subject (with stable physiological 
condition). Measurements were carried out in 3 discrete periods of time. All attempts at 
replication were successful.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

The device type was tested in the same participant. Randomization was therefore not 
relevant to the study.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not relevant, because a blinding process wouldn't influence the sampling result.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Origin 2018. Matlab 2016b.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. The HFF-1 cell line was purchased from ATCC.

b.  Describe the method of cell line authentication used. The human skin fibroblast cells HFF-1 were first purchased from American Type Culture 
Collection (ATCC) (product number is ATCC SCRC-1041) and cultured in Dulbecco's Modified 
Eagle's Medium (DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco) and 
1% penicillin/streptomycin (Gibco) under 37 °C within 5% CO2.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

The cell lines were not tested for mycoplasma contamination.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The human participant was a healthy male of age 22, with no cardiovascular abnormalities
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